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Message from HoD

Dr. Jayesh M. Dhodiya

It is my pleasure to release AMaThing 4.0 on the International Day of Mathematics, which is observed on March
14. As India has taken over G20’s presidency, I believe that Mathematics can unite the world, therefore creating
“Vasudhaiva Kutumbakam.”

In the present time, mathematics is applicable far beyond what we had ever imagined. It should be our respon-
sibility to analyze the nature and create nearly perfect mathematical models to represent them which will help the
world in reducing chaos.

Researchers should have a clear mission and vision while presenting their research in layman’s terms. Even among
us, we should start thinking about interdisciplinary research that will further unify humankind and create better
solutions for future generations.

At the end, I would like to thank the dedicated, hard-working team that has laboriously produced this wonderful
document.

Wishing the best
Dr. Jayesh M. Dhodiya

Message from the Editorial Team
Dear authors and readers

We are honoured to be a part of the publication of this issue of AMaThing. Recently, we have diversified our
field of acceptance, and this issue has seen a significant increase in articles that relate to science communication,
which might bring huge success to this issue.

We had gone through tough times to bring this scholastic issue this time. We have raised the bar in accepting
the articles and laid down stringent rules in publishing articles that have delayed the release of the issue.

The team wishes to excel in the magazine articles by diversifying and accepting articles related to further allied
fields of mathematical sciences in order to meet global standards. We will continue to publish quality articles that
may help reduce the vast expanse of science and society.

We assure the readers that they will have a joyful and thought-provoking time reading through the issue.

Cheers.

Ekata Jain
On behalf of the Editorial Team, 2022-23.
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How a Research Idea Explores in Science Community
Sagar Saini1
1Department of Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology, Surat, Gu-
jarat, India-395007

1 ajgoryana@gmail.com

We often think of discovery or invention as a process in the mind of a singular genius.
A flash of inspiration strikes and —eureka!— suddenly, we get a new way to describe

dark matter or the equations for gravity or mind-blowing fact about the universe.
However, the real deal is with the idea, how it travel from one brilliant mind to the other

minds. In this article, I want to show you a theoretical simulation work on how a
research idea explores the science community.

“I learned very early the difference between knowing the name of something and knowing something.”
Richard Feynman

Intuition

Let us start with how exactly the basic setup of any simulation (model) works in the mathematical world.
Almost every simulation work is a primary or modified version of the SIR (Susceptible, Infectious, Recovered)
model. In the science community, susceptibles are people with the same (or maybe different) research interests.
There are no such things as infectious or recovered people in the science world; one needs to draw an analogy
here to understand better. I am not a modelling expert, so I would be very cautious before generalising any of
the lessons here without deep consideration. I believe it is healthy to engage our little scientists in experiments
and research, especially if the alternative is uncertain.

Let us start simple with the layout, and if required, gradually make things more complex.

Network and Its Density

Usually, with properly constructed networks, the invention is something that happens on a network. Be-
ginning with the importance of a network and its density, a network is essential in two ways. First, preexisting
approaches have to make their way into the mind of the inventor (these are the citations of a new paper, the bib-
liography section of a new book, the giants on whose shoulders’ Newton and Euler stood). Second, the network
is essential for getting a new idea back out into the world (an invention that does not spread is hardly worth
calling an “invention” at all). Therefore, the spread of knowledge is a diffusion process. Take the example of the
discovery of gravity. Newton established gravity, having been hit by an apple on his head, as a force of attrac-
tion due to masses. After a period, Einstein developed a whole new theory of gravity. Here, the idea was passed
from one genius to another in order to make it more correct and less uncertain. Generalise this concept with
many experts (say four), and each one of them knew how to transform the previous idea into a better version of
itself. Nevertheless, here the speed of spread of an idea also depends on how ”close” they are (in the sense of the
same period or how dense their network is), and an expert as a member of the International Education Society
always has a slightly greater chance of encountering a new idea (or transforming it into a more desirable version).

I will present rough simulation images of how knowledge might diffuse and grow within a network with
conventional density.
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♠ Here, each white square-grid represents susceptible people
♠ The conceit of this simulation is that we need all four experts to contribute to the final version of the idea.
And at each phase of development, the idea has to diffuse to the relevant expert.
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Knowledge and Technology

In the scientific community, there is a never-ending loop within knowledge and technology. We use new
knowledge to devise new tools. For example, understanding the physics of semiconductors equips us to develop
powerful computers. Similarly, already known knowledge leads us to build new technology; this new technology
gives us new data, intuition, and results to extend the domains of our knowledge. We have a well-known exam-
ple in the Large Hadron Collider (LHC), the world’s largest and highest-energy particle collider. Over 10,000
scientists worked on it. LHC helps us with the completeness of the Standard Model of physics. New technolo-
gies, especially in travel and communication, change the structure of the social networks on which knowledge
grows. For example, over the last two decades, the number of users on ResearchGate increased from 25,000 to
more than 17 million. In particular, it allows experts and specialists to network more tightly with one another
(network density).

Constraints
Scientific research communities are considered the most refined and valuable structures our civilization has

produced. Significant numbers of specialists focused full-time on knowledge production led to the continuous
growth of society. However, unlike every system, it does have systematic problems. And one way to view those
obstacles is as network degradation.

Suppose we distinguish two ways of practising science: real science and careerist science. Real science is
whatever habits and practises reliably produce knowledge. It is motivated by curiosity and characterised by
honesty (Feynman: “I just have to understand the world, you see”). Careerist science, on the other hand, is
driven by professional ambition and marked by alteration and scientific functionalities.

(Opinion). It may appear to be scientific, but it does not accord with the fundamentals. Careerists take
up space in a real science research community, and they tie up the works. They promote themselves while
the rest of the community is trying to learn and share what is true. Instead of aiming for clarity, they twist
and muddle the knowledge in order to sound more impressive. They engage in what Harry Frankfurt would
call scientific nuisance. And consequently, we might model them as dead nodes, immune to the good-faith
information exchanges necessary for the growth of knowledge. Careerists certainly have the potential to stifle
our scientific communities with fake knowledge.
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♠ Here, grey colored square-grid represents the presence of careerists (constraint)

−→

Of course, there is no definite boundary between careerists and real scientists. We all have a little ca-
reerism in us. The question is just how much the network can carry before going quiet!
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Real-life Applications of Optimization
Nisha Pokharna1

1Department of Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology, Surat, Gu-
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1 nishapokharna3june@gmail.com

Knowingly or unknowingly, we are all using optimization in our daily lives in one way or another. So, it is
a natural question to answer, What is optimization or what are the optimization problems? Optimization prob-
lems are the problems of finding the best (or optimum) solutions from all the possible (feasible) solutions, and the
techniques for finding such solutions are termed optimization techniques. Based on the nature of the functions
involved, the conditions on the constraint functions, and the number of objective functions, optimization prob-
lems may be categorised as linear or nonlinear, constrained or unconstrained, single-objective, or multiobjective.

In real-world problems, it is often required to deal with more than single objective and nonlinear functions;
thus, most real-world problems fall into the category of nonlinear multiobjective optimization problems. A class
of optimization problems in which two or more objectives are to be optimised subject to some constraints is
known as a multiobjective optimization problem, and if the functions involved in these problems are nonlinear
in nature, then these kinds of problems are called nonlinear multiobjective optimization problems.

For example, if you want to buy a scooter, you have two options: choose a scooter at a lower price and
adjust for colour, or choose a scooter at a higher price and compromise on colour. These two objectives cannot
be fulfilled simultaneously, and hence are called conflicting objectives. For these types of conflicting objectives,
a compromise solution known as a Pareto optimal or Pareto efficient solution is proposed. This is just one
simple example of optimization in our daily lives. Many miraculous applications in the world of optimization
are constantly helping to make our lives easier.

Optimization includes an extensive variety of problems, including variational, continuous-time, optimal
control, complex optimization, stochastic, fuzzy, and interval optimization. Each kind of problem has its own
merits, which is why optimization problems have applications in diverse areas of business, including finance, the
health sector, ecological problems, economics, the management sector, production and supply chain problems,
and many more. Furthermore, the theoretical results of optimization are at the heart of many computer algo-
rithms and engineering techniques. To sum it up, the following are some important applications of optimization
problems:

1. Inventory management can be modelled as a multiobjective optimization problem of maximising profit
subject to cost and space constraints.

2. Variational optimization problems are used to optimize the shape of aircraft and spacecraft subject to
thickness, strain energy, or displacement bounds.

3. Stochastic optimization problems are the basic tools for the problems in the area of telecommunications.

4. Many numerical methods and algorithms based on the concept of optimization techniques are essential
for solving ecological problems.

5. Financial problems such as portfolio optimization and risk management can be solved using fractional
optimization.

These are just a few examples, but it is apt to say that “Optimization is everywhere!” Numerous appli-
cations of optimization problems are known, and there are still immense possibilities to explore and answer the
question, “What can be the new area where optimization can potentially be applied?” To understand the depth
of problems, one should continue to practise because, as William A. Dembski stated, “Constrained Optimiza-
tion is the art of compromising between conflicting objectives,” and no art can be mastered in a day. So, keep
searching, asking, practising, and attempting to make learning feasible while desiring compromised results, and
you will undoubtedly get the best results!
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Natural Discussion of Uncertainty Quantification
Lalchand Verma1, Ramakanta Meher2
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1 lalchandverma81@gmail.com, 2 meher_ramakanta@yahoo.com

Uncertainty quantification is a field of study concerned with identifying, quantifying, and managing uncer-
tainties in mathematical models and simulations. It involves analyzing the sources of uncertainty, characterizing
the nature and magnitude of these uncertainties, and propagating them through the model to determine their
impact on the output. Uncertainty can arise from various sources, including measurement error, model approx-
imation, and variability in input parameters.

The goal of uncertainty quantification is to provide accurate and reliable predictions and assess the model’s
predictions’ reliability by providing probabilistic bounds on the results. This information can be used to make
informed decisions, manage risk, and prioritize future research efforts. Uncertainty quantification is used in a
wide range of applications, including engineering, finance, environmental science, and healthcare.

Mathematical models and experimental data can both be affected by uncertainty in different ways. The
causes of doubt can be divided into several categories, including:

Parameter
The aforementioned predicament stems from model parameters that function as computer or mathematical

model inputs. Yet, their precise values elude experimentalists and cannot be governed by physical trials or
accurately deduced through statistical means. Instances of such difficulties include the local free-fall acceleration
in falling object experiments, diverse material properties in finite element analyses for engineering purposes,
and multiplier uncertainty in the macroeconomic policy optimization context.

Parametric
The observed fluctuation in the model’s input parameters can be attributed to its inherent variability. For

instance, the dimensions of a manufactured workpiece may deviate from the prescribed specifications, leading
to consequential variations in its overall performance.

Structural uncertainty
Known as model inadequacy, model bias, or model discrepancy, this phenomenon arises due to insufficient

knowledge regarding the underlying physics of the problem. It is contingent on how precisely a mathematical
model captures the actual system in real-world scenarios, considering that models are usually only approxima-
tions of reality. A classic example is modelling a falling object using the free-fall model, which is inherently
flawed due to the presence of air resistance. Even if all model parameters are known, a disparity is still expected
between the model and actual physics.

Algorithmic
Known as numerical uncertainty or discrete uncertainty, this category of uncertainty arises due to nu-

merical errors and approximations incurred during the implementation of computer models. Most models are
too intricate to be solved precisely, necessitating numerical techniques such as finite element or finite difference
methods to approximate solutions to partial differential equations, which can introduce numerical errors. Ex-
amples of such approximations include numerical integration and truncation of infinite sums, which are essential
in numerical implementations.

Experimental
Known as an observation error, this type of uncertainty arises due to the inherent variability in experimen-

tal measurements. Experimental uncertainty is unavoidable and can be observed by repeating measurements
multiple times with the same input settings and variables.
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Interpolation
This type of uncertainty arises due to the unavailability of adequate data collected from computer model

simulations and/or experimental measurements. In cases where simulation data or experimental measurements
are unavailable for certain input settings, one must resort to interpolation or extrapolation methods to predict
corresponding responses.

Aleatoric and epistemic
There are two main types of uncertainty, which are often seen in medical applications.

Aleatoric
Aleatoric uncertainty, also known as stochastic uncertainty, pertains to unknown factors that vary each

time an experiment is conducted. For instance, firing a single arrow with a mechanical bow that replicates each
launch precisely in terms of acceleration, altitude, direction, and final velocity will not necessarily hit the same
point on the target due to the random and intricate vibrations of the arrow shaft. The knowledge of these
vibrations cannot be ascertained adequately to eliminate the resulting scatter of impact points. However, it
is worth noting that the inability to measure this knowledge sufficiently using currently available devices does
not necessarily imply the non-existence of such information, which would place this uncertainty in the category
discussed below. The term “aleatoric” is derived from the Latin word “alea,” which means dice, alluding to
games of chance.

Epistemic uncertainty
Epistemic uncertainty, also known as systematic uncertainty, refers to the uncertainty that arises due to

incomplete knowledge or understanding of the underlying processes or models that govern the system being
studied. It arises due to various factors, such as measurement errors, model approximations, and missing data.

In the example you provided, the drag force acting on the object in the experiment is a source of epis-
temic uncertainty, as it is a known effect that is not accounted for in the commonly used model for gravitational
acceleration. However, this uncertainty can be reduced by measuring the drag force and incorporating it into
the model, resulting in a more accurate calculation of the gravitational acceleration.

Reducing epistemic uncertainty is important in many scientific and engineering applications, as it can
lead to more reliable and accurate predictions and decisions. This can be achieved through better measurement
techniques, more accurate models, and improved data collection and analysis methods.

Types of problems
There exist two fundamental categories of challenges in the field of uncertainty quantification: firstly, the

forward propagation of uncertainty, which involves the systematic propagation of various sources of uncertainty
through a model to estimate the overall uncertainty in the system’s response. Secondly, the inverse assessment
of model uncertainty and parameter uncertainty entails simultaneous calibration of model parameters utilizing
test data. The former problem has attracted significant research and resulted in the development of numerous
uncertainty analysis techniques. Conversely, the latter problem has garnered growing interest in the engineering
design community due to the significance of uncertainty quantification in model development and the resulting
predictions of the actual system response(s) in the creation of robust systems.

Forward
Uncertainty propagation refers to the process of quantifying uncertainties in the output(s) of a system

that result from uncertain inputs. This process focuses on the effects of parametric variability in the sources
of uncertainty on the system outputs. The objectives of uncertainty propagation analysis may include the
evaluation of low-order moments of the outputs, such as mean and variance, the assessment of the reliability of
the outputs, which is particularly useful in reliability engineering, where the system’s outputs are closely linked
to its performance, and the determination of the complete probability distribution of the outputs. The latter
objective is especially relevant in the context of utility optimization, where the complete distribution is utilised
to calculate the utility.
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Inverse
Given some experimental measurements of a system and some computer simulation results from its math-

ematical model, inverse uncertainty quantification estimates the discrepancy between the experiment and the
mathematical model (which is called bias correction) and estimates the values of unknown parameters in the
model if there are any (which is called parameter calibration or simply calibration).

Generally, this is a much more difficult problem than forward uncertainty propagation; however, it is vital
since it is typically implemented in a model updating process. There are several scenarios of inverse uncertainty
quantification:

• Bias correction

• Parameter calibration

• Bias correction and parameter calibration
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π: A Probabilistic Approach
Shruti Shah1
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π is a famous and old number in mathematics. So old that its first-ever explanation
dates back to the Bible in the form of a verse and is so well known that there is a day

dedicated to it! Today, we have used computers to calculate the value of π up to 22
trillion digits, but π existed long before computers were invented. Ever wondered how

people came up with techniques to calculate its value? What are some of the clever ideas
that they used?

Archimedes made the earliest approximation of π by using the concepts of geometry and algebra. Later,
mathematicians started expressing π in series such as the Wallis formula or the Gregory series.

One such unique idea was given by a French scientist named Georges Buffon, who, being very fond of
probabilities, did an experiment famously called “Buffon’s needle.” Accidentally, the probability of the event in
the experiment came out to have an expression with π in it!

• The experiment: Buffon randomly threw needles on a setup consisting of equally spaced parallel lines.
The goal was to find the probability that a needle intersects a line.

• Assumption: The distance between lines is h, and the length of the needle is l, which is less than h (l < h).

Mathematics is always incomplete without proof. Let us dive into its short and simple proof. For the
first time in history, a geometric approach was used to find a probability, which makes it even more enjoyable.
Probability is defined as desirable outcomes divided by the total number of possible outcomes. To find desirable
outcomes, we need to define the position of the needle (when thrown) so that all the possibilities are unique.
We take the parameters θ and x to describe it, where θ is the angle it makes with the horizontal and x is the
perpendicular distance between the centre of the needle and the parallel line.

The target was to find the boundary condition equivalent to the case when the needle just touched the
line. All the points lying under the curve of the boundary condition describe a unique position that a needle
has when thrown randomly.

Counting all the points is equivalent to calculating the area under the curve, equal to l. To calculate the
total number of possibilities, we deduce that 0<θ<π and 0 < x < h/2, the entire area is πh/2.

Finally, after taking the ratio, we get the probability as 2l
πh . We got the π term. Here is the result of a

fun simulation I found on the internet, which shows the π value calculated from an actual experiment:
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In the above simulation, we got the figure 3.108, which largely deviates from the value of π we know
today. Another similar simulation on the internet showed that we needed to drop approximately 15000 needles
to get the original value!

Long after Buffon experimented, various other versions of the experiment were tried; a few include the
case where l > h or the case where the needle was bent! Buffon’s needle is one of the most eminent and unique
experiments in the history of mathematics. He contributed innumerable things to a vastly unexplored area of
geometrical probability. His attempts to connect mathematics with real-life experiments are much more fun to
read.
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Going Up does not mean Going Down
Theophilus Gera1, Ekata Jain2

1,2Department of Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology, Surat,
Gujarat, India-395007

1 geratheophilus@gmail.com, 2 ekjain2712@gmail.com

Algebra is an interesting field for researchers, yet it seems to be a dull field to others outside of their
domain. Chain conditions on modules were conceptualised by Emmy Noether [4] in 1921. Noether proposed
ascending chain conditions on commutative rings, which were later renamed Noetherian rings. In 1927, the idea
of ascending chain conditions was dualized, and descending chain conditions were conceptualised by Emil Artin
[1], which were later renamed Artinian rings.

  In 1940, Hopkins Levitzki [3] proved that Artinian rings are Noetherian rings, but the converse may not
hold.

  Theorem ([2], Theorem 4.15). If R is an artinian ring, it is also a noetherian ring, and J(R) is nilpotent.

  Now, coming to the application of this theorem. Consider a ladder on the wall. If a person wishes to
ascend, this does not imply that he or she may descend, as this could result in an accident. If the person comes
down, it means that he has already gone up the ladder and finished his work.

  Analogous to the above application, consider the person to be a ring R and the right Artinian to be
going down and the right Noetherian to be going up, which means that the physical phenomenon of going up
and down is related to the Hopkins Levitzki Theorem.

References

[1] E. Artin. Zur theorie der hyperkomplexen zahlen. In Abhandlungen ausdem Mathematischen Semi-
nar der Universität Hamburg, volume 5, pages 251–260. Springer, 1927.
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Exchange Property
Theophilus Gera1, Sai Charan Gannamaneni2
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Gujarat, India-395007

1 geratheophilus@gmail.com, 2 saicharan9g@gmail.com

Exchanging objects for money has been observed for a long time, and the practise was eventually termed
the “barter system.” It is rather tough to trade products with other non-relevant objects, such as trading a
Samoyed puppy with a Turtle. We all know that a Samoyed puppy is worth far more than a Turtle. During
one of these discussions, the intermediate value system, which we now know as the monetary value system, may
have been formed.

Similarly, in algebra, we have various module structures in which we often check the exchange property.
This is an important property that will also help us analyse the decomposition property of modules. The de-
composition property decomposes modules into a direct sum of submodules. If each of the submodules involved
in the direct sum is simple, we call this a ”semi-simple module.” 

Definition. A module M is said to have exchange property if it can be written in the form of M = ⊕αMα

where Mα ⊆ M

We say that M has finite exchange if α is finite and M has full exchange if decomposition exist for any α.

If each element of R can be represented as sum of an unit and an idempotent, then we call R to be clean
ring. Clean rings were defined by Nicholson in [2]. There is a beautiful relationship between clean rings and
exchange property of rings.

Corollary ([1], Corollary 12). A ring R with no infinite set of orthogonal idempotents have the following
equivalent properties.

1. R is clean,

2. R is exchange.

There can exists counterexamples for the conjecture “finite exchange implies full exchange” but as noted
in ([3], §14) most of them are of free modules.

References

[1] V. P. Camillo and H.-P. Yu. Exchange rings, units and idempotents. Communications in Algebra,
22(12):4737–4749, 1994.

[2] W. K. Nicholson. Lifting idempotents and exchange rings. Transactions of the American Mathemat-
ical Society, 229:269–278, 1977.

[3] P. P. Nielsen. The exchange property for modules and rings. PhD thesis, University of California,
Berkeley, 2006.
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Neural Networks in Machine Learning
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Introduction
Neural networks are a potent tool in machine learning. The use of neural networks in machine learning

has helped to solve a variety of challenges. They are inspired by the structure and characteristics of the human
brain, and they are capable of learning complicated patterns in data. In this article, we will explore the basics
of neural networks, including their structure, function, and how they can be trained to make predictions on new
data.

Structure of Neural Networks
A neural network is composed of layers of interconnected nodes, or neurons. The neurons in each layer

receive input from the neurons in the previous layer, and they use this input to compute an output. The output
of each neuron is then passed on as input to the neurons in the next layer. This manner continues till the
output of the last layer is produced, which is the prediction of the neural network.

The first layer of a neural network is called the input layer, and it is responsible for receiving the input
data. The closing layer of a neural community is referred to as the output layer, and it produces the predictions
of the network.

The layers in between the input and output layers are referred to as hidden layers, and they are responsible
for computing intermediate representations of the input data.

Function of Neural Networks
The neurons in a neural network compute their output using a mathematical function called an activation

function. The activation function takes the weighted sum of the inputs to the neuron and applies a non-linear
transformation to produce the output. This non-linear transformation is what allows neural networks to learn
complex patterns in the data.

The weights in a neural network are learned during the training process, which involves feeding the network
a set of labeled data and adjusting the weights to minimize the difference between the network’s predictions and
the true labels. This is generally achieved using an optimization algorithm, such as stochastic gradient descent.

Types of Neural Networks
There are several types of neural networks, each with its own structure and function. Here are a few

examples:

1. Feedforward Neural Networks (FNNs): This is the most simple kind of neural network, the place the data
flows in one direction, from the input layer to the output layer.
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2. Convolutional Neural Networks (CNNs): This type of neural network is used for image recognition and
processing. It uses convolutional layers to extract features from the input image.

3. Recurrent Neural Networks (RNNs): This type of neural network is used for sequential data, such as speech
or text. It uses recurrent layers to store information about the previous inputs and make predictions about
the future inputs.

Applications of Neural Networks
Neural networks have been used to solve a huge range of problems, including photo recognition, speech

recognition, natural language processing, and game playing. Here are a few examples:

1. Image Recognition: Neural networks have been used to classify images into different categories, such as
cats and dogs, or to detect objects in images, such as cars and pedestrians.

2. Speech Recognition: Neural networks have been used to transcribe spoken words into text, or to recognize
the speaker of a voice.

3. Natural Language Processing: Neural networks have been used to perform tasks such as sentiment analysis,
language translation, and text generation.

Conclusion
Neural networks are a potent tool in machine learning. The use of neural networks in machine learning

has helped solve a variety of challenges. They are inspired by the structure and characteristics of the human
brain, and they are capable of learning complicated patterns in data. In this article, we have explored the basics
of neural networks, including their structure and function and how they can be trained to make predictions on
new data.
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Markov chains, named after Russian mathematician Andrei Andreevich Markov, are a non-independent
stochastic process in which previous events are irrelevant and future events are solely dependent on the present.
The origin of chains goes back to the study of the weak law of large numbers on an independent sequence
of random variables by Russian mathematician Pafnuty Chebyshev and his students Markov and Aleksandr
Mikhailovich Lyapunov. The papers authored by Mathematician Pavel Nekrasov had a huge impact on the
origin of Markov Chains. The paper published in 1902 by Nekrasov stated that the “necessary condition for
weak law of large numbers is the independence of the random variables”. But Markov disagreed with the state-
ment, which led to the development of Markov Chains. Markov published the first paper on the dependency
of chains where the weak law of large numbers holds, which was later renamed as the Markov Chain. Later
on, Markov Chains had huge applications in different fields of Mathematics, Probability, Statistics, and Physics.

A Markov chain is the representation of the system that transits from one state to another with known or
unknown transition probabilities. At first, the Markov chains are defined as discrete states with discrete time
distributions. Few years after the introduction of Markov Chains, Soviet mathematician Andrey Kolmogorov
developed the discrete space Markov Chain with continuous time distributions. This categorises Markov Chains
into Continuous Time Markov Chains (CTMC) and Discrete Time Markov Chains (DTMC). Both types can be
viewed in a real-world scenario. A few examples of DTMC are Druncard’s Walk, the Gambler’s Ruin Problem,
the Epidemic Model based on chain dependency, etc. A few examples of CTMC are the birth-death process,
stock prices, etc.

Representation of Markov Chain
Consider the state space S = {1, 2, 3, · · · }, with transitional probabilities pi→j ∀ i, j ∈ S. Let Xk be the

state at time k, then we have the conditional probability

P (Xk = j | Xk−1 = ik−1, Xk−2 = ik−2, · · · , X1 = i1) = P (Xk = j | Xk−1 = ik−1)

∀ j, ik−1, ik−2, · · · , i1 ∈ S which represents the Markov property i.e., the transition into future state (Xk)
depends only on the current state (Xk) but it is independent of past states (Xk−1, Xk−2, · · · , X1).

Applications
Markov chains have a considerable number of applications in various fields of science and technology. One

such application can be observed in search engines, where it uses the concept of chains. Google’s search engine
uses Markov chains to suggest items according to present internet activity. Queueing models are another type
of application where the number of customers that are in the system serves to express the status of the system.
Monte Carlo Markov Chain (MCMC) is a kind of sampling technique that uses the basic concepts of Markov
properties.
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On any modern map, Konigsberg would be difficult to locate, but thanks to a peculiar feature of its
location, it has become one of the most well-known places in mathematics. It is present on either side of the
Pregel River and was a medieval German city. There were two sizable islands in the middle, and seven bridges
linked the two islands to the river banks as well as to one another.

Königsberg Bridge Problem. How can one traverse through all seven bridges only once without
repeating any of them?

Just take a moment to think about it. Have you surrendered? You should absolutely do so. It is just not
conceivable.

Before analysing the solution, let us delve into the history of how it all began and the origin of Euler’s
solution. The story begins with Leonhard Euler, a prominent mathematician who created a new branch of
mathematics called the Geometry of Position, which is now widely known as Graph Theory. This novel type of
geometry did not exist before Euler introduced it.

In his famous paper from 1736, Euler addressed the Königsberg bridge puzzle, which ultimately gave birth
to the field of graph theory. He realised that the order of crossing the bridges did not matter in finding the
solution. He simplified the map by representing the four land masses as nodes connected by edges to depict the
bridges. Using this simplified graph, it became easy to calculate the degree of each node, which is the number
of bridges that each land mass crosses.

Why are degrees important? The significance of degrees in the context of this challenge is that in order to
traverse between landmasses, one bridge must be crossed to enter and another to exit. Similarly, while visiting
each landmass, the number of bridges connected to it must be an even number. This is because, for any route,
the bridges connecting each node must be paired in a unique manner, with the exception of the starting and
ending points. The graph demonstrates that all four nodes have an odd degree, which means that at some
point, a bridge will need to be crossed twice, regardless of the path taken.
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Euler formulated a general theory applicable to all graphs containing at least two nodes based on the
insights gained from this demonstration.

There are only two possible scenarios in which a path that traverses every edge exactly once, known as
an Eulerian path, can exist.

• The first one is when there are precisely two nodes with an odd degree, while all other nodes have an even
degree. One of the odd nodes will be the starting point, while the other will serve as the endpoint.

• Another scenario where an Eulerian path can exist is when all nodes in the graph have the same degree,
leading to what is known as an “Eulerian circuit” where the path both starts and ends at the same node.

As we go into the second case, let us go over some terminology.
Definition (Walk). A walk in a graph G is defined as a finite alternating sequence of vertices and edges

of the form: v0, e1, v1, e2, v2, e3, · · · , vn−1, en, vn.

If v0 = vn, then the walk is called a closed walk. Else, the walk is called an open walk.

Definition (Circuit). A closed walk in which no vertex (except its terminal vertices) appears more than
once is called a circuit.

Definition (Connected Graph). A graph G is said to be connected if there is at least one path between
every pair of vertices.

Definition (Euler Graph). A closed walk running through the edge of a graph exactly once is known as
an Euler line, and a graph consisting of an Euler line is called an Euler graph.

The following theorem is essential in determining whether a graph is an Euler graph.
Theorem. A given connected graph G is an Euler graph if and only if all vertices of G are of even degree.

Proof.

Part I Let G be a connected Euler graph, we have to show that all the vertices of G are of even degree. Since G
is an Euler graph, then by definition of an Euler graph, it contains an Euler line, which is a closed walk
running through every edge of a graph G exactly once. Now at any vertex v of G, we enter through one
edge and exit through the other edge while touching each vertex. During each touch, we have two distinct
edges incident to vertex v, so v is of even degree.

If v is the initial vertex, then an edge incident to it is also used to start, and another edge is used to finish
as the walk is closed. Hence the initial vertex is also of an even degree. Hence, each vertex is of an even
degree.

Part II Let G be connected, and each vertex of G be of even degree, we have to show that G is an Euler graph.

Since G is connected and all the vertices of G are of even degree. Let v be any vertex of G, construct
a closed walk W1 starting from v tracing every edge in the way exactly once and reaching again. Each
vertex is of an even degree, so this will be possible. If all the edges of G are traced, then G is an Euler
graph. If not, then let g1 be the graph consisting of the closed walk W1 and g′

1 be the graph consisting of
all the edges of G which are not in W1.
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Clearly, g1 and g′
1 are two subgraphs of G, as G is connected, there exists at least one vertex common to

both g1 and g′
1 say u.

Now start from u to construct a closed walk W2 in g′
1 which is also possible as each vertex of g′

1 is also of
even degree. When we combined W1 and W2, we form a new closed walk W3.

If W3 is G then G is an Euler graph. Otherwise, we can proceed in a similar way to form a new closed
walk form in the subgraph of G, which consists of those edges that are not in W3. This process terminates
after certain stages, and the final closed walk will be G.

Hence G is the Euler graph.

Upon examining the Königsberg Bridges graph, it becomes apparent that not all vertices possess an even
degree. Consequently, this graph does not meet the criteria for an Euler graph. As a result, it is impossible to
traverse each of the seven bridges only once and arrive back at the starting point.

During World War II, the Soviet Air Force destroyed two of Königsberg’s bridges, which made it possible
to create an Eulerian path through the remaining bridges. Despite the city’s destruction, it is remembered in
history for the puzzle that led to the creation of a new branch of mathematics. Königsberg was eventually rebuilt
as the Russian city of Kaliningrad, and the seven bridges that were once part of the puzzle are no longer standing.

How can an Eulerian path be created in Königsberg? It is quite straightforward - all we need
to do is remove a single bridge. Interestingly, history has already provided an example of an Eulerian path in
Königsberg.

Leonhard Euler’s solution of the Königsberg Bridge Problem in 1736 using a graph is widely considered
the most renowned application of graph theory. This long-standing problem was finally solved with the help of
Euler’s new theory of graphs and topology, which he established with his first published paper in this field.
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In the real world, we are often interested in predicting the values of variables and parameters like popu-
lation predictions, the number of infected persons by diseases, the speed of moving objects, the concentration
of the substance in a compartment, etc. Mathematical modelling has the ability to predict variables and pa-
rameters from the past as well as real-time data of the system, which can help us understand better behaviour
or aid us in planning for the future. A mathematical model can reflect or mimic the behaviour of a real-life
situation, and we can get a better understanding of the system through proper analysis of the model using
appropriate mathematical tools. Mathematical modelling has great importance in physics, chemistry, biology,
engineering, economics, and even industry. For example, if we consider mathematical modelling in the manu-
facturing industry, many aspects of manufacture, from mining to distribution, are susceptible to mathematical
modelling. In fact, manufacturing companies have participated in several industrial mathematical workshops,
where they discussed various problems and obtained solutions through mathematical modelling. To describe the
real-world problem and investigate the questions that usually arise from it, mathematical modelling is a very
important tool of mathematics. Using these tools, a real-world problem of the system is translated first into
the logical structure of the system and then converted into appropriate mathematical structures that represent
the real-world problem. After converting the real-world problem into mathematical form, the solutions to the
mathematical model are obtained by various solution methods, which are then interpreted in the language of the
real-world problem to make predictions or understand the situation for taking the right decisions for the system.
Mathematical modelling deals with problems from biology, chemistry, engineering, ecology, the environment,
physics, the social sciences, statistics, wildlife management, etc., and helps biologists, chemists, ecologists, and
economists analyse the problems of the system. Mathematical modelling helps them undertake experiments on
the mathematical representation of a real-world problem instead of undertaking experiments in the real world.

Mathematical models can be used to help with all kinds of system decisions. In today’s complex and
fast-moving environment, firms may have a wide variety of strategic and operational choices. A mathematical
model helps system persons explore complex choices, using sets of assumptions to represent alternative future
operating environments. It also helps to develop a clearer understanding of the inherent pattern of relationships
between the variables and the likely outcomes. In the end, it is the judgement of the decision-makers that is
crucial, but a well-designed model can make the exercise of that judgement easier. A model can help with all
three stages of decision-making: analysis, choice, and implementation. To understand the real potential of an
opportunity, a model should be constructed in a way that will allow the impact of alternative assumptions and
scenarios to be explored. Through the flexing of assumptions and the methodical examination of alternatives,
the range of potential outcomes is revealed. Identifying the extent of this range of outcomes enables the model
user to understand the potential risk and reward of the whole opportunity.

It also took time for the importance of mathematical modelling to be completely understood. Physics
and its application to nature and natural phenomena is a major force in mathematical modelling and its further
development. Later, economics became another area of study where mathematical modelling began to play
a major role. If the model has been built with sufficient detail, such that it shows each of the variables and
parameters of the system accurately, then such a mathematical model will always provide early warnings of
unforeseen problems to run the system properly, which helps to improve the decision-making process in the
future.

Now-a-days, we have different kinds of branches of mathematics like graph theory, discrete mathematics,
calculus, operations research, computing, fractional calculus, etc., so people can develop mathematical models
by using any one of the fields, like computer lab design, where they can utilise a graph theory-based model. To
predict the populations or bacterial growth, they utilised calculus, interpolation, or computational techniques.
To find pollutant in rivers, they utilised statistical models or compartment modelling. A compartmental model
is used to understand the effects of drugs on the body. To find the velocity of the moving object, another
calculus-based model is utilised. To find maximum profit or to complete the work in the minimum amount
of time with the minimum amount of risk and the maximum quality of service, the operations research-based
model is utilised. The origin of mathematical modelling is in the year 2000 BC, when the three ancient civi-
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lizations of Babylon, Egypt, and India had a good knowledge of mathematics and used mathematical models in
various spheres of life. In the field of astronomy, Ptolemy, influenced by Pythagoras’ idea of describing celestial
mechanics by circles, developed a mathematical model of the solar system using circles to predict the movement
of the sun, the moon, and the planets. The model was so accurate that it was used until the early seventeenth
century, when Johannes Kepler discovered a much more simple and superior model for planetary motion in
1619. This model, with later refinements done by Newton and Einstein, is still in use today. In the Western
world, it was only in the sixteenth century that mathematics and mathematical models developed. The greatest
mathematician in the Western world after the decline of Greek civilization was Fibonacci, Leonardo da Pisa.
The son of a merchant, Fibonacci made many journeys to the Orient and familiarised himself with mathematics
as it had been practised in the Eastern world. He used algebraic methods to improve his trade as a merchant.
He first realised the great practical advantage of using the Indian numbers over the Roman numbers, which
were still in use in Europe at that time.

The developments of Mathematical models are also noticed in the field of biology specifically in cell
geometry and process of cell, in the field of engineering like the study of variation of shielding gas in GTA welding,
in the field of agriculture for prediction of aging behavior for Al-Cu-Mg/ Bagasse particular composites and to
predict sunflower oil expression, in the field of social sciences for public health decision making and estimations,
in other field too like for developing of cerebral cortical folding patterns which have fascinated scientists with their
beauty and complexity for centuries, in the development of a new three dimensional mathematical ionosphere
model at the European Space Agency/European Space Operators Centre, in battery modeling or mathematical
description of batteries, which plays an important role in the design and use of batteries, estimation of battery
processes and battery design.
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